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Short Communication 

A recent clinical trial for pediatric embryonal brain 

tumors reported encouraging results, with a treatment 

scheme that included peroxisome proliferator-activated 

receptor-α (PPARα) agonist fenofibrate [1]. The 

treatment scheme was aimed at inhibiting 

neovascularization; however, the drugs used can 

inhibit cancer cell growth by a number of mechanisms. 

In a different treatment scheme, aimed to treat a 

variety of recurrent or progressive tumors, fenofibrate 

could not demonstrate similarly encouraging effects 

[2]. 

Under which conditions can fenofibrate be 

effective? 

In basic and clinical research, PPAR agonists 

are generally used to inhibit angiogenesis [1], [2], [3]. 

However, it has been revealed that they can stimulate 

angiogenesis as well, using as models human cultured 

endothelial cells and mouse cornea [4]. It could be 

argued that cell type and microenvironment determine 

effects on angiogenesis, and can be determined by the 

cell and host composition of the preclinical study 

model.  

Downstream targets of PPAR agonists can 

have multiple effects on gene expression and cell 

physiology:  The subject of PPAR ligands as anticancer 

drugs has been reviewed recently.  Grabacka et al., 

note that PPARα activation can engage molecular 

interplay among SIRT1, AMPK, and PGC-1α [5]  which 

could explain, at least in part, the encouraging results 

of the Peyrl et al., study (more on this topic in [6]).  In 

cultured cervical cancer cells, however, fenofibrate can 

induce mRNA for PPARα, PPARγ and superoxide 

dismutase 1, with tendency to decrease radiation 

sensitivity [7]. In different types of gastrointestinal 

cancer, PPAR activity above or below normal can affect 

tumor growth [8]. High PPAR activity can kill cancer 

cells that are unable to utilize fatty acids as a source of 

energy, or that depend on signals mediated by 

transcription factors NF-kB or STAT3; on the other 
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hand PPAR activity can support growth of cancer cells 

that are deficient in tumor suppressors such as APC, or 

cancer cells that derive energy from oxidation of fatty 

acids [8].  

 Interestingly, in a recent mechanistic study on 

chronic lymphocytic leukemia (CLL), inhibitors of PPARα 

and fatty acid oxidation enzymes increased 

glucocorticoid-mediated killing of CLL cells in culture. 

The study authors noted a similar effect on mouse CLL 

xenografts, where immune-deficient mice could be 

rescued by combination of GCs and PPARα inhibition [9].  

CLL cells may use fatty acids as a source of energy, 

because they express lipoprotein lipase: palmitate 

oxidation rates in circulating CLL cells can be similar to 

normal fat-burning cells such as muscle [10]. Transgenic 

expression of PPARα in the cell line Daudi, increased 

both expression of immunosuppressive factors 

interleukin (IL)10 and phospho-STAT3 and resistance to 

metabolic and cytotoxic stress; in contrast, PPARα 

antagonist MK886 killed circulating CLL cells directly, 

caused proliferating CLL cells to enter an immunogenic 

death pathway and cleared CLL xenografts from 

immunodeficient mice. [10]. 

 Lipoprotein lipase is highly expressed in bone 

marrow mesenchymal stem cells of acute myeloid 

leukemia patients, making those marrow cells prone to 

adipogenic differentiation, and thereby contributing to 

alteration of the bone marrow as a niche [11]. 

 It is clear that balance of metabolic function is 

critical to the function of bone marrow as a niche for 

hematopoetic cells: in normal hematopoietic stem cells, 

regulation of mitochondrial fatty acid oxidation is 

essential for their function. Inhibition of fatty acid 

oxidation results in symmetric commitment [12]. 

Inflammatory signals are an important 

parameter of PPAR effects on cancer development. In 

mouse liver, deletion of PPARα aggravates 

lipopolysaccharide -induced hepatic injury through 

activating transcription factors STAT1 and NF-κB-p65 

and increasing levels of pro-inflammatory cytokines. The 

activities of key anti-oxidant enzymes and mitochondrial 

complexes decrease while lipid peroxidation and protein 

nitration levels increase [13]. Similarly, inhibition of 

PPARγ in mouse myeloid-lineage cells induces systemic 

inflammation, immunosuppression, and tumorigenesis

[14]. 

The ability of nuclear receptors to interfere with 

specific aspects of inflammatory signals is crucial to the 

effects of PPAR agonists. Against Mantle cell lymphoma 

(MCL), fenofibrate was shown to inhibit activity of the 

transcription factor NF-kB, killing the malignant cells 

[15]. It must be noted that NF-kB has a wide range of 

effects on nuclear receptors [16] [17], and that nuclear 

receptors have a broader role in cancer cells than the 

one anticipated by their function in classical 

endocrinology of healthy tissue [18] [17]. 

 Breast cancer cells survive due to enhancement 

of  NF-kB activity by glucocorticoids [19]. NF-kB may 

also be activated by PPARα in breast cancer initiating 

cells [20].  Activation of NF-kB facilitates plasmacytoma 

cell resistance to glucocorticoids and to inhibitors of 

Janus kinases, and enables the cells to grow in the 

absence of Interleukin-6 [21]. In acute leukemia 

activation of NF-kB was associated with glucocorticoid 

treatment failure in children [22], and chemotherapy 

failure in adults [23]. In cell culture, persistent activation 

of NF-kB could protect Acute Myeloid Leukemia cells 

from proteasome inhibitor bortezomib [24]. 

The importance of regulation of inflammatory 

mechanisms by nuclear receptors and their ligands is 

also evident in comparison of the effects of fibrates and 

glucocorticoids between rodents and primates. Fibrates 

have partly different effects in the liver of a primate 

(cynomolgus monkey) in comparison to rodents (rats 

and mice). When mice and rats are given PPARα 

agonists, they show hepatic peroxisome proliferation, 
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hypertrophy, hyperplasia, and eventually 

hepatocarcinogenesis; these effects are accompanied by 

a higher expression of inflammatory genes in rodent 

liver, in comparison to monkeys [25]. The inflammatory 

effects in mice, however, can be modulated by 

glucocorticoids, as there appears to be a synergy of 

PPAR and GR against inflammatory signals [26] [27]: 

PPARα blocks glucocorticoid receptor-mediated 

transactivation but cooperates with liganded 

glucocorticoid receptor for transrepression on NF-kB 

[28]. As result, in mice with hyperinsulinemia through 

high-fat diet, activation of PPARα limits GC-induced Glc 

intolerance [28]. 

 A synergy of nuclear receptors against 

inflammatory mediators can have importance for 

leukemic cells that are resistant to glucocorticoids [29]; 

such cells can be killed in vitro by proteasome in 

inhibitor with a gene expression signature enriched for 

the STAT3 signal pathway [30]. The clinically permitted 

exposure, however, to the proteasome inhibitor, is 

rather low [31], and bone marrow cells may modulate 

STAT3 signals [32]. Interestingly, chronic treatment with 

fenofibrate inhibits STAT3 activation, and prevents the 

IL-6-induced gene expression in wild-type but not in 

PPARα-deficient mice [33]. Tissue-specific modulators of 

PPARα could be therefore effective, to interfere with 

selected targets of the glucocorticoids in cancer cells in 

vivo [34]. For types of tumor cells that cannot integrate 

fatty acid oxidation in their metabolism, even fenofibrate 

should be studied as part of the antineoplastic drug 

combination, including however preferably assays not 

only on the malignant cells, but also on the cells that 

form their niche. As described, the molecular endpoint 

targets of PPAR pathways are useful variables in the 

analysis of drug interactions at the level of cell culture. 

In conclusion, PPAR activators like fenofibrate have a 

high potential as anticancer drugs; and due to 

interference with glucocorticoid signals, are particularly 

interesting in leukemia. Fenofibrate is capable, however, 

for negative effects in antineoplastic treatment, 

especially on cancer cell types that utilize fatty acid 

oxidation as an energy source, and as a pathway for 

resistance to drugs. Advance in molecular study of 

homeostatic mechanisms, with particular attention to 

aspects specific for the human organism [35], will 

enable progress in design of combination schemes for 

this type of PPAR agonists.   
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